A Preconditioning Technique for Indefinite Systems Resulting from Mixed Approximations
نویسندگان
چکیده
This paper provides a preconditioned iterative technique for the solution of saddle point problems. These problems typically arise in the numerical approximation of partial differential equations by Lagrange multiplier techniques and/or mixed methods. The saddle point problem is reformulated as a symmetric positive definite system, which is then solved by conjugate gradient iteration. Applications to the equations of elasticity and Stokes are discussed and the results of numerical experiments are given.
منابع مشابه
Precondit ioning indefinite systems arising from mixed finite element discretization of second-order elliptic problems
We discuss certain preconditioning techniques for solving indefinite linear systems of equations arising from mixed finite element discretizations of elliptic equations of second order. The techniques are based on various approximations of the mass matrix, say, by simply lumping it to be diagonal or by constructing a diagonal matrix assembled of properly scaled lumped element mass matrices. We ...
متن کاملJOHN COURTNEY HAWS . Preconditioning KKT Systems . ( Under the direction of
JOHN COURTNEY HAWS. Preconditioning KKT Systems. (Under the direction of Professor Carl D. Meyer.) This research presents new preconditioners for linear systems. We proceed from the most general case to the very specific problem area of sparse optimal control. In the first most general approach, we assume only that the coefficient matrix is nonsingular. We target highly indefinite, nonsymmetric...
متن کاملA Decoupled Preconditioning Technique for a Mixed Stokes-Darcy Model
We propose an efficient iterative method to solve the mixed Stokes-Dracy model for coupling fluid and porous media flow. The weak formulation of this problem leads to a coupled, indefinite, ill-conditioned and symmetric linear system of equations. We apply a decoupled preconditioning technique requiring only good solvers for the local mixed-Darcy and Stokes subproblems. We prove that the method...
متن کاملA Zero-Cost Preconditioning for a Class of Indefinite Linear Systems
Systems AVRAM SIDI Computer Science Department Technion Israel Institute of Technology Haifa 32000 ISRAEL E-mail: [email protected] http://www.cs.technion.ac.il/ ̃asidi/ Abstract: We consider the solution by Krylov subspace methods of a certain class of hermitian indefinite linear systems, such as those that arise from discretization of the Stokes equations in incompressible fluid mechanic...
متن کاملRobust Preconditioned Iterative So- lution Methods for Large-scale Non- symmetric Problems
We study robust, preconditioned, iterative solution methods for largescale linear systems of equations, arising from different applications in geophysics and geotechnics. The first type of linear systems studied here, which are dense, arise from a boundary element type of discretization of crack propagation in brittle material. Numerical experiment show that simple algebraic preconditioning str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010